Condusiv Technologies Blog

Condusiv Technologies Blog

Blogging @Condusiv

The Condusiv blog shares insight into the issues surrounding system and application performance—and how I/O optimization software is breaking new ground in solving those issues.

Recently Discovered SSD Vulnerabilities Could Cripple Global Markets with Data Corruption if Exploited by Attackers

by Brian Morin 15. June 2017 10:38

Recently discovered multi-level cell (MLC) solid-state drive (SSD) vulnerabilities by researchers from Carnegie Mellon University, Seagate, and the Swiss Federal Institute of Technology in Zurich, reveal the first-ever security weakness of its kind against MLC SSDs that store much of the world’s data. Two different types of malicious attacks are reported to corrupt data, leaving much of the world’s data currently exposed while organizations search for answers.

If security experts and data protection experts didn’t have enough to worry about already, the latest discovery from Carnegie Mellon University has set off brand new alarms that could be far more crippling than the recent WannaCry virus or any ransomware attack. In this case, data is not infected or held hostage, but is lost entirely - not even the host SSD hardware can be salvaged after such an attack. This is not simply alarming to organizations that stand the most to lose like financial institutions, but we’re talking about real lives here if patient care is compromised as we saw earlier this month at hospitals across the UK.

In a recently published report by researchers from Carnegie Mellon University, Seagate, and the Swiss Federal Institute of Technology in Zurich, there are two types of malicious attacks that can corrupt data and shorten the lifespan of MLC SSDs – a write attack (“program interference”) and a read attack (“read disturb”). Both attacks inundate the SSD with a large number of operations over a short period of time, which can corrupt data, shorten lifespan, and render an SSD useless to store data in a reliable manner into the future. However, both attacks rely upon native read and write operations from the operating system to the solid-state drive, which is circumvented by Condusiv® I/O reduction software on Windows systems (V-locity®, SSDkeeper®, Diskeeper® 16).

The only reason this story has been covered lightly by the media and not sensationalized across headlines is because no one has died yet or lost a billion dollars. This is a new and very different kind of vulnerability. Protection from this kind of an attack is not something that can be addressed by traditional lines of defense like anti-virus software, firmware upgrades, or OS patches. Since it is cost prohibitive for organizations to “rip-and-replace” multi-cell SSDs with single-cell SSDs, they are forced to rely on data sets that have been “backed-up.” However, what good is restoring data to hardware that can no longer reliably store data?

By acting as the “gatekeeper” between the Windows OS and the underlying SSD device, Condusiv I/O reduction software solutions perform inline optimizations at the OS-level before data is physically written or read from the solid-state drive. As a result, Condusiv’s patented technology is the only known solution that can disrupt “program interference” write operation attacks as well as “read disturb” read operation attacks that would attempt to exploit SSD vulnerabilities and corrupt data. While most known for boosting performance of applications running on Windows systems while extending the longevity of SSDs, Condusiv solutions go a step further as the only line of defense against these malicious attacks.

Condusiv’s patented write optimization engine (IntelliWrite®) mitigates the first vulnerability, “program interference,” by disrupting the write pattern that would otherwise generate errors and corrupt data. IntelliWrite eliminates excessively small writes and subsequent reads by ensuring large, clean contiguous writes from Windows so write operations to solid-state devices are performed in the most efficient manner possible on Windows servers and PCs. An attack could only be successful in the rare instance of limited free space or zero free space on a volume that results in writes occurring natively, circumventing the benefit of IntelliWrite.

Condusiv’s second patented engine (IntelliMemory®) disrupts the second vulnerability, “read disturb,” by establishing a tier-0 caching strategy that leverages idle, available memory to serve hot reads. This renders the “read disturb” attack useless since the storage target for hot reads becomes memory instead of the SSD device. A “read disturb” attack could only be successful in the rare instance that a Windows system is memory constrained and has no idle, available memory to be leveraged for cache.

While organizations use Condusiv software on Windows systems to maintain peak performance and extend the longevity of their SSDs, they can trust Condusiv to protect against malicious attacks that would otherwise corrupt user data and bring great harm to their business and service to customers.

Telestream Solves MS Exchange Timeouts and Boosts SQL with V-locity I/O Reduction Software

by Brian Morin 13. June 2017 05:12

Many first-time users of V-locity® I/O reduction software for virtual servers end up trying the software for more than boosting application performance, but to resolve “shadow IT issues” like timeouts, unexpected crashes, troublesome servers that need to be rebooted regularly, etc.


Often times, the underlying issue is in fact I/O related. By offloading I/O from  storage and optimizing the remaining I/O stream to be written and read as a large, clean sequential profile, the “shadow IT issues” that plague many environments simply disappear when trying V-locity. Condusiv has published previous case studies solving shadow IT issues on ERP systems and MS-SQL apps. For Telestream (a popular provider of software and hardware products for video capture, encoding, transcoding, and network-based delivery), it was users timing out from MS Exchange and getting disconnected from the email server.


Before considering adding another hybrid storage array, all-flash array, or expensive new servers that may or may not solve the problem, they gave V-locity a try first.


“As soon as we installed V-locity and the Exchange timeouts disappeared, we were elated that users were no longer getting disconnected from the email server. That made our purchase of V-locity I/O reduction software a ‘no brainer,’” said Allie McLachlan, Systems Administrator, Telestream.


McLachlan continued, “The most eye-opening experience was finding out how badly our system performance was being taxed by small, fractured, random I/O from Windows write inefficiencies and the “I/O blender” effect. We would have had no idea that was even an issue without trying V-locity to solve those root cause performance issues.”


To read the full story and how their MS-SQL apps were boosted by 50% as well, read here: http://learn.condusiv.com/rs/246-QKS-770/images/CS_Telestream.pdf


University of Illinois Doubles SQL and Oracle Performance on All-Flash Arrays with V-locity® I/O Reduction Software

by Brian Morin 19. May 2017 11:00

The University of Illinois, had already deployed an all-flash Dell Compellent storage array to support their hardest hitting application, AssetWorks AiM, that runs on Oracle. After a year in service, performance began to erode due to growth in users and overall workload. Other hard hitting MS-SQL applications supported by hybrid arrays were suffering performance degradation as well.

The one common denominator is that all these applications ran on Windows servers – Windows Server 2012R2.

“As we learned through this exercise with Condusiv’s V-locity I/O reduction software, we were getting hit really hard by thousands of excessively small, tiny writes and reads that dampened performance significantly,” said Greg Landes, Manager of Systems Services. “Everything was just slower due to Windows Server write inefficiencies that break writes down to be much smaller than they need to be, and forces the all-flash SAN to process far more I/O operations than necessary for any given workload.”

Landes continued, “When you have a dump truck but are only filling it a shovelful at a time before sending it on, you’re not getting near the payload you should get with each trip. That’s the exact effect we were getting with a surplus of unnecessarily small, fractured writes and subsequent reads, and it was really hurting our storage performance, even though we had a really fast ‘dump truck.’ We had no idea how much this was hurting us until we tried V-locity to address the root-cause problem to get more payload with every write. When you no longer have to process three small, fractured writes for something that only needs one write and a single I/O operation, everything is just faster.”

When testing the before-and-after effect on their production system, Greg and his team first measured without V-locity. It took 4 hours and 3 minutes to process 1.57TB of data, requiring 13,910,568 I/O operations from storage. After V-locity, the same system processed 2.1TB of data in 1 hour and 6 minutes, while only needing to process 2,702,479 I/O operations from underlying storage. “We processed half a terabyte more in a quarter of the time,” said Landes.

“Not only did V-locity dramatically help our write-heavy MS-SQL and Oracle Servers by increasing performance 50–100% on several workloads, we saw even bigger gains on our read heavy applications that could take advantage of V-locity’s patented DRAM caching engine, that put our idle, unused memory to good use. Since we had provisioned adequate memory for these I/O-intensive systems, we were well positioned to get the most from V-locity.”

“We thought we were getting the most performance possible from our systems, but it wasn’t until we used V-locity that we realized how inefficient these systems really are if you’re not addressing the root cause performance issues related to the I/O profile from Windows servers. By solving the issue of small, fractured, random I/O, we’ve been able to increase the efficiency of our infrastructure and, ultimately, our people,” said Landes.

Tags:

General | SAN | Success Stories | virtualization | V-Locity | Windows Server 2012

I Have Backups and Snapshots, So Why Do Condusiv Customers Use Undelete®?

by James Fields, Director of Customer Support 10. May 2017 09:57

Backups and snapshots are used by enterprises to recover data sets in the event of system failure. But how about individual files on file servers? Often times they are accidentally deleted by users or overwritten.

Backups and snapshots can still be used to retrieve those files but that can be akin to finding a needle in a haystack and laborious to recover. Which backup contains the most recent version? Was the file created or modified before the last backup or snapshot took place? In that case, the backup or snapshot isn’t of any help.

Condusiv customers use Undelete as a first line of defense for data protection on file servers to keep administrators from digging through backups and snapshots for individual files or folders. If any user accidentally deletes a file over a network share, it goes into Undelete’s recycle bin. This ensures real-time protection of all files on a file server that can be quickly and immediately recovered. Many organizations use Undelete for their HelpDesk team to recover individual files instead of tasking IT staff with the tedious task of accessing backups for a single file.

Moreover, Undelete keeps prior versions of MS Office documents, so if your CEO accidentally overwrites his PowerPoint presentation, you can always recover prior versions of saved files that share the same file name. One of the features admins like most about Undelete is the ability to see who deleted a file, when it was deleted, and who created the file.  This is especially useful if you are concerned with the possible nefarious activities of staff. 

Last month, 53 Undelete customers participated in an Undelete product survey and told us what they like the most, and here are some of their answers:

“Ease of restoring files deleted from network locations without having to use backups.”

“We have backups on daily basis, but nothing that keeps the deleted network files available and reported on who deleted. Undelete covers this issue.”

“We needed a product that provided "Recycle Bin" functionality for network shares.  Undelete Server goes one step further and even tracks revisions. Great product.”

“Sometimes, human errors occur and files get overwritten or deleted, which means losing several hours of work since the last regular backup. We need to be able to instantly recover deleted files - this is not possible with scheduled backups or VSS.”

“Versioning control on modified or overwritten files.”

“Much quicker and simpler than reverting to any BACKUP/RESTORE software. Plus, our HelpDesk can use it.”

“On a number of occasions, users will "lose" or delete files. It is simpler to use Undelete than scour through backups.”

“Close the time gap between an incident and the last regular backup.”

“HelpDesk needed this tool to offload menial requests from IT staff to dig through backups for one file”

 

James Fields | DIRECTOR OF CUSTOMER SUPPORT

Tags:

Data Protection | File Recovery | General | Windows 7 | Windows 8 | Windows Server 2012

Condusiv Launches SSDkeeper Software that Guarantees “Faster than New” Performance for PCs and Physical Servers and Extends Longevity of SSDs

by Brian Morin 17. January 2017 09:30

The company that sold over 100 Million Diskeeper® licenses for hard disk drive systems, now releases SSDkeeper™ to keep solid-state drive systems running longer while performing “faster than new.”

Every Windows PC or physical server fitted with a solid-state drive (SSD) suffers from very small, fractured writes and reads, which dampen optimal SSD performance and ultimately erodes the longevity of SSDs from write amplification issues. SSDkeeper’s patented software ensures large, clean contiguous writes and reads for more payload with every I/O operation, reduced Program/Erase (P/E) cycles that shorten SSD longevity, and boosts performance even further with its ability to cache hot reads within idle, available DRAM.

Solid-state drives can only handle a number of finite writes before failing. Every write kicks off P/E cycles that shorten SSD lifespan otherwise known as write amplification. By reducing the number of writes required for any given file or workload, SSDkeeper significantly boosts write performance speed while also reducing the number of P/E cycles that would have otherwise been executed. This enables individuals and organizations to reclaim the write speed of their SSD drives while ensuring the longest life possible.

Patented Write Optimization

SSDkeeper’s patented write optimization engine (IntelliWrite®) prevents excessively small, fragmented writes and reads that rob the performance and endurance of SSDs. SSDkeeper ensures large, clean contiguous writes from Windows, so maximum payload is carried with every I/O operation. By eliminating the “death by a thousand cuts” scenario of many, tiny writes and reads that slow system performance, the lifespan of an SSD is also extended due to reduction in write amplification issues that plague all SSD devices.

Patented Read Optimization

SSDkeeper electrifies Windows system performance further with an additional patented feature - dynamic memory caching (IntelliMemory®). By automatically using idle, available DRAM to serve hot reads, data is served from memory which is 12-15X faster than SSD and further reduces wear to the SSD device. The real genius in SSDkeeper’s DRAM caching engine is that nothing has to be allocated for cache. All caching occurs automatically. SSDkeeper dynamically uses only the memory that is available at any given moment and throttles according to the need of the application, so there is never an issue of resource contention or memory starvation. If a system is ever memory constrained at any point, SSDkeeper's caching engine will back off entirely. However, systems with just 4GB of available DRAM commonly serve 50% of read traffic. It doesn't take much available memory to have a big impact on performance.

Enhanced Reporting

If you ever wanted to know how much Windows inefficiencies were robbing system performance, SSDkeeper tracks time saved due to elimination of small, fragmented writes and time saved from every read request that is served from DRAM instead of being served from the underlying SSD. Users can leverage SSDkeeper’s built-in dashboard to see what percentage of all write requests are reduced by sequentializing otherwise small, fractured writes and what percentage of all read requests are cached from idle, available DRAM.

SSDkeeper is a lightweight file system driver that runs invisibly in the background with near-zero intrusion on system resources. All optimizations occur automatically in real-time.

While SSDkeeper provides the same core patented functionality and features as the latest Diskeeper® 16 for hard disk drives (minus defragmentation functions for hard disk drives only), the benefit to a solid-state drive is different than to a hard disk drive. Hard disk drives do not suffer from write amplification that reduces longevity. By eliminating excessively small writes, IntelliWrite goes beyond improved write performance but extends endurance as well.

Available in Professional and Server Editions

>SSDkeeper Professional for Windows PCs with SSD drives greatly enhances the performance of corporate laptops and desktops.

>SSDkeeper Server speeds physical server system performance of the most I/O intensive applications such as MS-SQL Server by 2X to 10X depending on the amount of idle, unused memory.  

>Options include Diskeeper Administrator management console to automate network deployment and management across hundreds or thousands of PCs or servers.  

>A free 30-day software trial download is available at http://www.condusiv.com/evaluation-software/

>Now available for purchase on our online store:  http://www.condusiv.com/purchase/SSDKeeper/

 

RecentComments

Comment RSS

Month List

Calendar

<<  June 2018  >>
MoTuWeThFrSaSu
28293031123
45678910
11121314151617
18192021222324
2526272829301
2345678

View posts in large calendar