Condusiv Technologies Blog

Condusiv Technologies Blog

Blogging @Condusiv

The Condusiv blog shares insight into the issues surrounding system and application performance—and how I/O optimization software is breaking new ground in solving those issues.

New! Diskeeper 16 Guarantees “Faster than New” Performance for Physical Servers and PCs

by Brian Morin 26. September 2016 09:56

The world’s most popular defragmentation software for physical servers and PCs makes “defrag” a thing of the past and delivers “faster than new” performance by dynamically caching hot reads with idle DRAM.  As a result, Diskeeper® 16 guarantees to solve the toughest application performance issues on physical servers like MS-SQL and guarantees to fix sluggish PCs with faster than new performance or your money back for 90 days – no questions asked.

The market is still catching up to the fact that Diskeeper’s newest patented engine no longer “defrags” but rather proactively eliminates fragmentation with large, sequential writes from Windows to underlying HDDs, SSDs, and SAN storage systems. This eliminates the “death by a thousand cuts” scenario of small, tiny writes and reads that inflates I/Os per second, robs throughput, and shortens the lifespan of HDDs and SSDs alike. However, the biggest new announcement has to do with the addition of DRAM caching – putting idle DRAM to good use by serving hot reads without memory contention or resource starvation.

“Diskeeper 16 with DRAM caching served over 50% of my reads from DRAM and eliminated over 30% of write traffic by preventing fragmentation. Now everything is more responsive!” - David Bruce, Managing Partner, David Bruce & Associates

“Diskeeper 16 with DRAM caching doubled our throughput, so we could backup in half the time.  Our Dell Rapid Recovery backup server is running smoother than ever.” - Curtis Jackson, Network Admin, School City of Hammond

“WOW! Watch it go! I have 44GB of memory in the physical server and Diskeeper is using around 20GB of it to cache!! I can’t imagine having a server without it! Diskeeper 16 is a vastly improved version of Diskeeper!” - Andy Vabulas, Vabulas Enterprises

“Our Symantec app running on a physical server has been notoriously slow for as long as I can remember, but since adding Diskeeper 16 it has improved significantly.” Josh Currier, Network Infrastructure Manager, Munters Corporation

 “With Diskeeper 16 I can tell my workstation is more responsive with no lag or any type of hesitation. Truly SMART Technology.” - William Krasulak, Systems/Network Admin, Nacci Printing, Inc.

“Our most I/O intensive applications on physical servers needed some help, so we installed Diskeeper 16 with DRAM caching and were amazed by the performance boost!” - Victor Grandmaiter, IT Director, Fort Bend Central Appraisal District

“Diskeeper eliminated 32% of my write traffic by preventing fragmentation and cached 64% of my read traffic within idle memory. This saved my workstation over 20 hours in I/O time after 24 days of testing!” - Lou Goodreau, IT Manager, New England Fishery

“Installed Diskeeper 16 on our worst performing physical servers running ERP with a SQL database and saw an immediate 50% boost!" - Hamid Bouhassoune, Systems Engineer, Global Skincare Company

A top New York clothing brand tried Diskeeper 16 with DRAM caching on their physical servers and saw backup times with Veeam and Backup Exec drop by more than half!

Before Diskeeper Install:

8/7, 10GB, 14MB/s, 1:38

8/8, 11 GB, 13MB/s, 1:54

After Diskeeper Install:

          8/12, 13GB, 21MB/s, 1:30

        8/13, 14GB, 30MB/s, 0:58

        8/14, 13GB, 33MB/s, 0:55

        8/15, 11GB, 36MB/s, 0:44

        8/19, 17GB, 30MB/s, 1:06


A Large Illinois Non-Profit tested Diskeeper 16 with DRAM caching on Windows 2012R2 physical servers running CRM and accounting software with a MS-SQL backend. Note – these improvements were almost exclusively from Diskeeper 16’s write optimization engine since idle memory was not available to initiate the new caching engine.


See a screenshot of the new dashboard reporting that shows “time saved” from using Diskeeper 16 to eliminate fragmentation and cache reads with idle DRAM.


Try Diskeeper 16 with DRAM caching for 30-days -> 




Teaser: Coming Soon! Intelligent Caching and Fragmentation Prevention = IO Heaven

by Brian Morin 19. September 2016 04:53

Sometimes the performance of physical servers, PCs and laptops slows to a crawl. No matter what you do, it takes half an eternity to open some files. It’s tied into the architecture of the Windows operating system. The OS becomes progressively slower the longer it is used and the more it is burdened with added software and large volumes of data.

In the old days, the solution was easy – defragment the hard drive. However, many production servers can’t be taken offline to defragment, and many laptops only have solid state drives (SSDs) that don’t submit to defragmentation. So is there any hope?

Condusiv has solved these dilemmas in the soon to be released version of Diskeeper®. With over 100 million licenses sold, Diskeeper has been the undisputed leader for decades when it comes to keeping Windows systems fragment free and performing well. And with Diskeeper 16 coming out soon, feedback from Beta testers is that it goes way beyond a mere incremental release with a few added frills, bells and whistles. Instead, the consensus among them is that it is a “next generation” release that goes well beyond just keeping Windows systems running like new but actually boosts performance faster than new.

How is this being achieved? The company had been perfecting two technologies within its portfolio and is now bringing them together – fragmentation prevention and DRAM caching.

On the one side, the idea is that you prevent fragmentation before data is written to a production server. This is a lifesaver for IT administrators who need to immediately boost the performance of critical applications like MS-SQL running on physical servers. Diskeeper keeps systems running optimally with its patented fragmentation prevention engine that ensures large, clean, contiguous writes from Windows, eliminating the small, tiny writes that rob performance with “death by a thousand cuts” by inflating IOPS and stealing throughput.

But that’s only the half of it.  A little known fact about Condusiv is that it is also a world leader in caching. In addition to their incredible work on Diskeeper, the Condusiv development team has evolved a unique DRAM caching approach that has been implemented via OEM partners for several years. So popular has this technology become that the company has sold over 5 million caching licenses that have been tied to ultrabooks but now is being made available commercially.

Soon to be released Diskeeper 16’s DRAM caching electrifies performance:

·         Benchmark tests show MS-SQL workload performance boosts of up to 6X

·         An average of 40% latency reduction across hundreds of servers

·         No hint of memory contention or resource starvation

·         Fleets of laptops suddenly running like a dream

·         PCMark MS Office productivity tests show an increase of 73% on Windows 10 machines

·         Huge leaps in SSD write speed and extended SSD lifespan

·         Solves even the worst performing physical servers or Windows PCs backed by a money-back guarantee.

Could it be, then, that there really is hope to get PCs and physicals servers to be running faster than new?


You’ll have to wait until Diskeeper 16 is unveiled to hear the full story. 

VMware Advises on Defrag

by Brian Morin 27. July 2016 01:40

VMware: Defrag or Not?

Dave Lewis sent in a question, “There is such a quandary about disk fragmentation in the VMware environment. One says defrag and another says never. Who's right? This has been a hard subject to track and define.”

I’m going to debunk “defragging” in a minute, but if you read VMware’s own best practice guide on improving performance (found here), page 17 reveals “adding more memory” as the top recommendation while the second most important recommendation is to “defrag all guest machines.”

As much as VMware is aware that fragmentation impacts performance, the real question is how relevant is the task of defragging in today’s environment with sophisticated storage services and new mediums like flash that should never be defragged? First of all, no storage administrator would defrag an entire “live” disk volume without the tedious task of taking it offline due to the impact that change block activity has against services like replication and thin provisioning, which means the problem goes ignored on HDD-based storage systems. Second, organizations who utilize flash can do nothing about the write amplification issues from fragmentation or the resulting slow write performance from a surplus of small, fractured writes.

The beauty behind V-locity® I/O reduction software in a virtual environment is that fragmentation is never an issue because V-locity optimizes the I/O stream at the point of origin to ensure Windows executes writes in the most optimum manner possible. This means large, contiguous, sequential writes to the backend storage for every write and subsequent read. This boosts the performance of both HDD and SSD systems. As much as flash performs well with random reads, it chokes badly on random writes. A typical SSD might spec random reads at 300,000 IOPS but drop to 23,000 IOPS when it comes to writes due to erase cycles and housekeeping that goes into every write. This is why some organizations continue to use spindles for write heavy apps that are sequential in nature.

When most people think of fragmentation, they think in terms of it being a physical layer issue on a mechanical disk. However, in an enterprise environment, Windows is extracted from the physical layer. The real problem is an IOPS inflation issue where the relationship between I/O and data breaks down and there ends up being a surplus of small, tiny I/O that chews up performance no matter what storage media is used on the backend. Instead of utilizing a single I/O to process a 64K file, Windows will break that down into smaller and smaller chunks….with each chunk requiring its own I/O operation to process.

This is bad enough if one virtual server is being taxed by Windows write inefficiencies and sending down twice as many I/O requests as it should to process any given workload…now amplify that same problem happening across all the VMs on the same host and there ends up being a tsunami of unnecessary I/O overwhelming the host and underlying storage subsystem.

As much as virtualization has been great for server efficiency, the one downside is how it adds complexity to the data path. This means I/O characteristics from Windows that are much smaller, more fractured, and more random than they need to be. As a result, performance suffers “death by a thousand cuts” from all this small, tiny I/O that gets subsequently randomized at the hypervisor.

So instead of taking VMware’s recommendation to “defrag,” take our recommendation to never worry about the issue again and put an end to all the small, split I/Os that are hurting performance the most.

Tags: , ,

Defrag | Diskeeper | General | virtualization | V-Locity

Top 5 Questions from V-locity and Diskeeper Customers

by Brian Morin 20. April 2016 05:00

After having chatted with 50+ customers the last three months, I’ve heard the same five questions enough times to turn it into a blog entry, and a lot of it has to do with flash:


1. Do Condusiv products still “defrag” like in the old days of Diskeeper?

No. Although users can use Diskeeper to manually defrag if they so choose, the core engines in Diskeeper and V-locity have nothing to do with defragmentation or physical disk management. The patented IntelliWrite® engine inside Diskeeper and V-locity adds a layer of intelligence into the Windows operating system enabling it improve the sequential nature of I/O traffic with large contiguous writes and subsequent reads, which improves performance benefit to both SSDs and HDDs. Since I/O is being streamlined at the point of origin, fragmentation is proactively eliminated from ever becoming an issue in the first place. Although SSDs should never be “defragged,” fragmentation prevention has enormous benefits. This means processing a single I/O to read or write a 64KB file instead of needing several I/O. This alleviates IOPS inflation of workloads to SSDs and cuts down on the number of erase cycles required to write any given file, improving write performance and extending flash reliability.


2. Why is it more important to solve Windows write inefficiencies in virtual environments regardless of flash or spindles on the backend? 

Windows write inefficiencies are a problem in physical environments but an even bigger problem in virtual environments due to the fact that multiple instances of the OS are sitting on the same host, creating a bottleneck or choke point that all I/O must funnel through. It’s bad enough if one virtual server is being taxed by Windows write inefficiencies and sending down twice as many I/O requests as it should to process any given workload…now amplify that same problem happening across all the VMs on the same host and there ends up being a tsunami of unnecessary I/O overwhelming the host and underlying storage subsystem. The performance penalty of all of this unnecessary I/O ends up getting further exacerbated by the “I/O Blender” that mixes and randomizes the I/O streams from all the VMs at the point of the hypervisor before sending out to storage a very random pattern, the exact type of pattern that chokes flash performance the most - random writes. V-locity’s IntelliWrite® engine writes files in a contiguous manner which significantly reduces the amount of I/O required to write/read any given file. In addition, IntelliMemory® caches reads from available DRAM. With both engines reducing I/O to storage, that means the usual requirement from storage to process 1GB via 80K I/O drops to 60K I/O at a minimum, but often down to 50K I/O or 40K I/O. This is why the typical V-locity customer sees anywhere from 50-100% more throughput regardless of flash or spindles on the backend because all the optimization is occurring where I/O originates.

VMware’s own “vSphere Monitoring and Performance Guide” calls for “defragmentation of the file system on all guests” as its top performance best practice tip behind adding more memory. When it comes to V-locity, nothing ever has to be “defragged” since fragmentation is proactively eliminated from ever becoming a problem in the first place.


3. How Does V-locity help with flash storage? 

One of the most common misnomers is that V-locity is the perfect complement to spindles, but not for flash. That misnomer couldn’t be further from the truth. The fact is, most V-locity customers run V-locity on top of a hybrid (flash & spindles) array or all-flash array. And this is because without V-locity, the underlying storage subsystem has to process at least 35% more I/O than necessary to process any given workload.

As much as virtualization has been great for server efficiency, the one downside is the complexity introduced to the data path, resulting in I/O characteristics that are much smaller, more fractured, and more random than it needs to be. This means flash storage systems are processing workloads 30-50% slower than they should because performance is suffering death-by-a-thousand cuts from all this small, tiny, random I/O that inflates IOPS and chews up throughput. V-locity streamlines I/O to be much more efficient, so twice as much data can be carried with each I/O operation. This significantly improves flash write performance and extends flash reliability with reduced erase cycles. In addition, V-locity establishes a tier-0 caching strategy using idle, available DRAM to cache reads. As little as 3GB of available memory drives an average of 40% reduction in response time (see source). By optimizing writes and reads, that means V-locity drives down the amount of I/O required to process any given workload. Instead of needing 80K I/O to process a GB of data, users typically only need 50K I/O or sometimes even less.

For more on how V-locity complements hybrid storage or all-flash storage, listen to the following OnDemand Webinar I did with a flash storage vendor (Nimble) and a mutual customer who uses hybrid storage + V-locity for a best-of-breed approach for I/O performance.


4. Is V-locity’s DRAM caching engine starving my applications of precious memory by caching? 

No. V-locity dynamically uses what Windows sees as available and throttles back if an application requires more memory, ensuring there is never an issue of resource contention or memory starvation. V-locity even keeps a buffer so there is never a latency issue in serving back memory. ESG Labs examined the last 3,500 VMs that tested V-locity and noted a 40% average reduction in response time (see source). This technology has been battle-tested over 5 years across millions of licenses with some of largest OEMs in the industry.


5. What is the difference between V-locity and Diskeeper? 

Diskeeper is for physical servers while V-locity is for virtual servers. Diskeeper is priced per OS instance while V-locity is now priced per host, meaning V-locity can be installed on any number of virtual servers on that host. Diskeeper Professional is for physical clients. The main feature difference is whereas Diskeeper keeps physical servers or clients running like new, V-locity accelerates applications by 50-300%. While both Diskeeper and V-locity solve Windows write inefficiencies at the point of origin where I/O is created, V-locity goes a step beyond by caching reads via idle, available DRAM for 50-300% faster application performance. Diskeeper customers who have virtualized can opt to convert their Diskeeper licenses to V-locity licenses to drive value to their virtualized infrastructure.


Stay tuned on the next major release of Diskeeper coming soon that may inherit similar functionality from V-locity.

SSDs and Defrag

by Alex Klein 3. August 2012 06:32

We recently responded to a forum post on our YouTube channel regarding SSDs and Defragmentation - you can view the video here:

Below are some "before and after" graphs that provide proof that fragmentation affects SSDs:


Tags: , , ,

Defrag | Diskeeper | SSD, Solid State, Flash | Windows 7


Comment RSS

Month List


<<  October 2016  >>

View posts in large calendar