Condusiv Technologies Blog

Condusiv Technologies Blog

Blogging @Condusiv

The Condusiv blog shares insight into the issues surrounding system and application performance—and how I/O optimization software is breaking new ground in solving those issues.

Which Processes are Using All of My System Resources?

by Gary Quan 17. July 2018 05:50

Over time as more files and applications are added to your system, you notice that performance has degraded, and you want to find out what is causing it. A good starting point is to see how the system resources are being used and which processes and/or files are using them.

Both Diskeeper® and SSDkeeper® contain a lesser known feature to assist you on this. It is called the System Monitoring Report which can show you how the CPU and I/O resources are being utilized, then digging down a bit deeper, which processes or files are using them.

Under Reports on the Main Menu, the System Monitoring Report provides you with data on the system’s CPU usage and I/O Activity.

 

The CPU Usage report takes the average CPU usage from the past 7 days, then provides a graph of the hourly usage on an average day. You can then see at which times the CPU resources are being hit the most and by how much.

Digging down some more, you can then see which processes utilized the most CPU resources.

 

The Disk I/O Activity report takes the average disk I/O activity from the past 7 days, then provides a graph of the hourly activity on an average day. You can then determine at which times the I/O activity is the highest.

Digging down some more, you can then see which processes utilized the I/O resources the most, plus what processes are causing the most split (extra) I/Os.

 

You can also see which file types have the highest I/O utilization as well as those causing the most split (extra) I/Os.  This can help indicate what files and related processes are causing this type of extra I/O activity.

 

So, if you are trying to see how your system is being used, maybe for performance issues, this report gives you a quick and easy look on how the CPU and Disk I/O resources are being used on your system and what processes and file types are using them. This along with some other Microsoft Utilities, like Task Manager and Performance Monitor can help you tune your system for optimum performance.

Solving the IO Blender Effect with Software-Based Caching

by Spencer Allingham 5. July 2018 07:30

First, let me explain exactly what the IO Blender Effect is, and why it causes a problem in virtualized environments such as those from VMware or Microsoft’s Hyper-V.



This is typically what storage IO traffic would look like when everything is working well. You have the least number of storage IO packets, each carrying a large payload of data down to the storage. Because the data is arriving in large chunks at a time, the storage controller has the opportunity to create large stripes across its media, using the least number of storage-level operations before being able to acknowledge that the write has been successful.



Unfortunately, all too often the Windows Write Driver is forced to split data that it’s writing into many more, much smaller IO packets. These split IO situations cause data to be transferred far less efficiently, and this adds overhead to each write and subsequent read. Now that the storage controller is only receiving data in much smaller chunks at a time, it can only create much smaller stripes across its media, meaning many more storage operations are required to process each gigabyte of storage IO traffic.


This is not only true when writing data, but also if you need to read that data back at some later time.

But what does this really mean in real-world terms?

It means that an average gigabyte of storage IO traffic that should take perhaps 2,000 or 3,000 storage IO packets to complete, is now taking 30,000, or 40,000 storage IO packets instead. The data transfer has been split into many more, much smaller, fractured IO packets. Each storage IO operation that has to be generated takes a measurable amount of time and system resource to process, and so this is bad for performance! It will cause your workloads to run slower than they should, and this will worsen over time unless you perform some time and resource-costly maintenance.

So, what about the IO Blender Effect?

Well, the IO Blender Effect can amplify the performance penalty (or Windows IO Performance Tax) in a virtualized environment. Here’s how it works…

 

As the small, fractured IO traffic from several virtual machines passes through the physical host hypervisor (Hyper-V server or VMware ESX server), the hypervisor acts like a blender. It mixes these IO streams, which causes a randomization of the storage IO packets, before sending out what is now a chaotic mess of small, fractured and now very random IO streams out to the storage controller.

It doesn’t matter what type of storage you have on the back-end. It could be direct attached disks in the physical host machine, or a Storage Area Network (SAN), this type of storage IO profile couldn’t be less storage-friendly.

The storage is now only receiving data in small chunks at a time, and won’t understand the relationship between the packets, so it now only has the opportunity to create very small stripes across its media, and that unfortunately means many more storage operations are required before it can send an acknowledgement of the data transfer back up to the Windows operating system that originated it.

How can RAM caching alleviate the problem?

 

Firstly, to be truly effective the RAM caching needs to be done at the Windows operating system layer. This provides the shortest IO path for read IO requests that can be satisfied from server-side RAM, provisioned to each virtual machine. By satisfying as many “Hot Reads” from RAM as possible, you now have a situation where not only are those read requests being satisfied faster, but those requests are now not having to go out to storage. That means less storage IO packets for the hypervisor to blend.

Furthermore, the V-locity® caching software from Condusiv Technologies also employs a patented technology called IntelliWrite®. This intelligently helps the Windows Write Driver make better choices when writing data out to disk, which avoids many of the split IO situations that would then be made worse by the IO Blender Effect. You now get back to that ideal situation of healthy IO; large, sequential writes and reads.

Is RAM caching a disruptive solution?

 

No! Not at all, if done properly.

Condusiv’s V-locity software for virtualised environments is completely non-disruptive to live, running workloads such as SQL Servers, Microsoft Dynamics, Business Information (BI) solutions such as IBM Cognos, or other important workloads such as SAP, Oracle and the such.

In fact, all you need to do to test this for yourself is download a free trialware copy from:

www.condusiv.com/try

Just install it! There are no reboots required, and it will start working in just a couple of minutes. If you decide that it isn’t for you, then uninstall it just as easily. No reboots, no disruption!


Windows is still Windows Whether in the Cloud, on Hyperconverged or All-flash

by Brian Morin 5. June 2018 04:43

Let me start by stating two facts – facts that I will substantiate if you continue to the end.

Fact #1 - Windows suffers from severe write inefficiencies that dampen overall performance. The holy grail question as to how severe is answered below.

Fact #2, Windows is still Windows whether running in the cloud, on hyperconverged systems, all-flash storage, or all three. Before you jump to the real-world examples below, let me first explain why.

No matter where you run Windows and no matter what kind of storage environment you run Windows on, Windows still penalizes optimal performance due to severe write inefficiencies in the hand-off of data to storage. Files are always broken down to be excessively smaller than they need to be. Since each piece means a dedicated I/O operation to process as a write or read, this means an enormous amount of noisy, unnecessary I/O traffic is chewing up precious IOPS, eroding throughput, and causing everything to run slower despite how many IOPS are at your disposal.

How much slower?

Now that the latest version of our I/O reduction software is being run across tens of thousands of servers and hundreds of thousands of PCs, we can empirically point out that no matter what kind of environment Windows is running on, there is always 30-40% of I/O traffic that is nothing but mere noise stealing resources and robbing optimal performance.

Yes, there are edge cases in which the inefficiency is as little as 10% but also other edge cases where the inefficiency is upwards of 70%. That being said, the median range is solidly in the 30-40% range and it has absolutely nothing to do with the backend media whether spindle, flash, hybrid, hyperconverged, cloud, or local storage.

Even if running Windows on an all-flash hyperconverged system, SAN or cloud environment with low latency and high IOPS, if the I/O profile isn’t addressed by our I/O reduction software to ensure large, clean, contiguous writes and reads, then 30-40% more IOPS will always be required for any given workload, which adds up to unnecessarily giving away 30-40% of the IOPS you paid for while slowing the completion of every job and query by the same amount.

So what’s going on here? Why is this happening and how?

First of all, the behavior of Windows when it comes to processing write and read input/output (I/O) operations is identical despite the storage backend whether local or network or media despite spindles or flash. This is because Windows only ever sees a virtual disk - the logical disk within the file system itself. The OS is abstracted from the physical layer entirely. Windows doesn’t know and doesn’t care if the underlying storage is a local disk or SSD, an array full of SSDs, hyperconverged, or cloud. In the mind of the OS, the logical disk IS the physical disk when, in fact, it’s just a reference architecture. In the case of enterprise storage, the underlying storage controllers manage where the data physically lives. However, no storage device can dictate to Windows how to write (and subsequently read) in the most efficient manner possible.

This is why many enterprise storage controllers have their own proprietary algorithms to “clean up” the mess Windows gives it by either buffering or coalescing files on a dedicated SSD or NVRAM tier or physically move pieces of the same file to line up sequentially, which does nothing for the first penalized write nor several penalized reads after as the algorithm first needs to identify a continued pattern before moving blocks. As much as storage controller optimization helps, it’s a far cry from an actual solution because it doesn’t solve the source of the larger root cause problem - even with backend storage controller optimizations, Windows will still make the underlying server to storage architecture execute many more I/O operations than are required to write and subsequently read a file, and every extra I/O required takes a measure of time in the same way that four partially loaded dump trucks will take longer to deliver the full load versus one fully loaded dump truck. It bears repeating - no storage device can dictate to Windows how to best write and read files for the healthiest I/O profile that delivers optimum performance because only Windows controls how files are written to the logical disk. And that singular action is what determines the I/O density (or lack of) from server to storage.

The reason this is occurring is because there are no APIs that exist between the Windows OS and underlying storage system whereby free space at the logical layer can be intelligently synced and consolidated with the physical layer without change block movement that would otherwise wear out SSDs and trigger copy-on-write activity that would blow up storage services like replication, thin provisioning, and more.

This means Windows has no choice but to choose the next available allocation at the logical disk layer within the file systems itself instead of choosing the BEST allocation to write and subsequently read a file.

The problem is that the next available allocation is only ever the right size on day 1 on a freshly formatted NTFS volume. But as time goes on and files are written and erased and re-written and extended and many temporary files are quickly created and erased, that means the next available space is never the right size. So, when Windows is trying to write a 1MB file but the next available allocation at the logical disk layer is 4K, it will fill that 4K, split the file, generate another I/O operation, look for the next available allocation, fill, split, and rinse and repeat until the file is fully written, and your I/O profile is cluttered with split I/Os. The result is an I/O degradation of excessively small writes and reads that penalizes performance with a “death by a thousand cuts” scenario.

It’s for this reason, over 2,500 small, midsized, and large enterprises have deployed our I/O reduction software to eliminate all that noisy I/O robbing performance by addressing the root cause problem. Since Condusiv software sits at the storage driver level, our purview is able to supply patented intelligence to the Windows OS, enabling it to choose the BEST allocation for any file instead of the next available, which is never the right size. This ensures the healthiest I/O profile possible for maximum storage performance on every write and read. Above and beyond that benefit, our DRAM read caching engine (the same engine OEM’d by 9 of the top 10 PC manufacturers), eliminates hot reads from traversing the full stack from storage by serving it straight from idle, available DRAM. Customers who add anywhere to 4GB-16GB of memory to key systems with a read bias to get more from that engine, will offload 50-80% of all reads from storage, saving even more precious storage IOPS while serving from DRAM which is 15X faster than SSD. Those who need the most performance possible or simply need to free up more storage IOPS will max our 128GB threshold and offload 90-99% of reads from storage.

Let’s look at some real-world examples from customers.

Here is VDI in AWS shared by Curt Hapner (CIO, Altenloh Brinck & Co.). 63% of read traffic is being offloaded from underlying storage and 33% of write I/O operations. He was getting sluggish VDI performance, so he bumped up memory slightly on all instances to get more power from our software and the sluggishness disappeared.

Here is an Epicor ERP with SQL backend in AWS from Altenloh Brinck & Co. 39% of reads are being eliminated along with 44% of writes to boost the performance and efficiency of their most mission critical system.

 

Here’s from one of the largest federal branches in Washington running Windows servers on an all-flash Nutanix. 45% of reads are being offloaded and 38% of write traffic.

 

Here is a spreadsheet compilation of different systems from one of the largest hospitality and event companies in Europe who run their workloads in Azure. The extraction of the dashboard data into the CSV shows not just the percentage of read and write traffic offloaded from storage but how much I/O capacity our software is handing back to their Azure instances.

 

To illustrate we use the software here at Condusiv on our own systems, this dashboard screenshot is from our own Chief Architect (Rick Cadruvi), who uses Diskeeper on his SSD-powered PC. You can see him share his own production data in the recent “live demo” webinar on V-locity 7.0 - https://youtu.be/Zn2QGxBHUzs

As you can see, 50% of reads are offloaded from his local SSD while 42% of writes operations have been saved by displacing small, fractured files with large, clean contiguous files. Not only is that extending the life of his SSD by reducing write amplification, but he has saved over 6 days of I/O time in the last month.

 

Finally, regarding all-flash SAN storage systems, the full data is in this case study with the University of Illinois who used Condusiv I/O reduction software to more than double the performance of SQL and Oracle sitting on their all-flash arrays: http://learn.condusiv.com/rs/246-QKS-770/images/CS_University-Illinois.pdf?utm_campaign=CS_UnivIll_Case_Study

For a free trial, visit http://learn.condusiv.com/Try-V-locity.html. For best results, bump up memory on key systems if you can and make sure to install the software on all the VMs on the same host. If you have more than 10 VMs, you may want to Contact Us for SE assistance in spinning up our centralized management console to push everything at once – a 20-min exercise and no reboot required.

Please visit www.condusiv.com/v-locity for more than 20 case studies on how our I/O reduction software doubled the performance of mission critical applications like MS-SQL for customers of various environments.

The Revolution of Our Technology

by Rick Cadruvi, Chief Architect 18. October 2017 12:38

I chose to use the word “Revolution” instead of “Evolution” because, with all due modesty, our patented technology has been more a series of leaps to stay ahead of performance-crushing bottlenecks. After all, our company purpose as stated by our Founder, Craig Jensen, is:

“The purpose of our company is to provide computer technology that enormously increases

the production and income of an area.”

We have always been about improving your production. We know your systems are not about having really cool hardware but rather about maximizing your organization’s production. Our passion has been about eliminating the stops, slows and stalls to your application performance and instead, to jack up that performance and give you headroom for expansion. Now, most of you know us by our reputation for Diskeeper®. What you probably don’t know about us is our leadership in system performance software.

We’ve been at this for 35 years with a laser focus. As an example, for years hard drives were the common storage technology and they were slow and limited in size, so we invented numerous File System Optimization technologies such as Defragmentation, I-FAAST®1 and Directory Consolidation to remove the barriers to getting at data quickly. As drive sizes grew, we added new technologies and jettisoned those that no longer gave bang for the buck. Technologies like InvisiTasking® were invented to help maximize overall system performance, while removing bottlenecks.

As SSDs began to emerge, we worked with several OEMs to take advantage of SSDs to dramatically reduce data access times as well as reducing the time it took to boot systems and resume from hibernate. We created technologies to improve SSD longevity and even worked with manufacturers on hybrid drives, providing hinting information, so their drive performance and endurance would be world class.

As storage arrays were emerging we created technologies to allow them to better utilize storage resources and pre-stage space for future use. We also created technologies targeting performance issues related to file system inefficiencies without negatively affecting storage array technologies like snapshots.

When virtualization was emerging, we could see the coming VM resource contention issues that would materialize. We used that insight to create file system optimization technologies to deal with those issues before anyone coined the phrase “I/O Blender Effect”.

We have been doing caching for a very long time2. We have always targeted removal of the I/Os that get in your applications path to data along with satisfying the data from cache that delivers performance improvements of 50-300% or more. Our goal was not caching your application specific data, but rather to make sure your application could access its data much faster. That’s why our unique caching technology has been used by leading OEMs.

Our RAM-based caching solutions include dynamic memory allocation schemes to use resources that would otherwise be idle to maximize overall system performance. When you need those resources, we give them back. When they are idle, we make use of them without your having to adjust anything for the best achievable performance. “Set It and Forget It®” is our trademark for good reason.

We know that staying ahead of the problems you face now, with a clear understanding of what will limit your production in 3 to 5 years, is the best way we can realize our company purpose and help you maximize your production and thus your profitability. We take seriously having a clear vision of where your problems are now and where they will be in the future. As new hardware and software technologies roll out, we will be there removing the new barriers to your performance then, just as we do now.

1. I-FAAST stands for Intelligent File Access Acceleration Sequencing Technology, a technology designed to take advantage of different performing regions on storage to allow your hottest data to be retrieved in the fastest time.

2. If I can personally brag, I’ve created numerous caching solutions over a period of 40 years.

Recently Discovered SSD Vulnerabilities Could Cripple Global Markets with Data Corruption if Exploited by Attackers

by Brian Morin 15. June 2017 10:38

Recently discovered multi-level cell (MLC) solid-state drive (SSD) vulnerabilities by researchers from Carnegie Mellon University, Seagate, and the Swiss Federal Institute of Technology in Zurich, reveal the first-ever security weakness of its kind against MLC SSDs that store much of the world’s data. Two different types of malicious attacks are reported to corrupt data, leaving much of the world’s data currently exposed while organizations search for answers.

If security experts and data protection experts didn’t have enough to worry about already, the latest discovery from Carnegie Mellon University has set off brand new alarms that could be far more crippling than the recent WannaCry virus or any ransomware attack. In this case, data is not infected or held hostage, but is lost entirely - not even the host SSD hardware can be salvaged after such an attack. This is not simply alarming to organizations that stand the most to lose like financial institutions, but we’re talking about real lives here if patient care is compromised as we saw earlier this month at hospitals across the UK.

In a recently published report by researchers from Carnegie Mellon University, Seagate, and the Swiss Federal Institute of Technology in Zurich, there are two types of malicious attacks that can corrupt data and shorten the lifespan of MLC SSDs – a write attack (“program interference”) and a read attack (“read disturb”). Both attacks inundate the SSD with a large number of operations over a short period of time, which can corrupt data, shorten lifespan, and render an SSD useless to store data in a reliable manner into the future. However, both attacks rely upon native read and write operations from the operating system to the solid-state drive, which is circumvented by Condusiv® I/O reduction software on Windows systems (V-locity®, SSDkeeper®, Diskeeper® 16).

The only reason this story has been covered lightly by the media and not sensationalized across headlines is because no one has died yet or lost a billion dollars. This is a new and very different kind of vulnerability. Protection from this kind of an attack is not something that can be addressed by traditional lines of defense like anti-virus software, firmware upgrades, or OS patches. Since it is cost prohibitive for organizations to “rip-and-replace” multi-cell SSDs with single-cell SSDs, they are forced to rely on data sets that have been “backed-up.” However, what good is restoring data to hardware that can no longer reliably store data?

By acting as the “gatekeeper” between the Windows OS and the underlying SSD device, Condusiv I/O reduction software solutions perform inline optimizations at the OS-level before data is physically written or read from the solid-state drive. As a result, Condusiv’s patented technology is the only known solution that can disrupt “program interference” write operation attacks as well as “read disturb” read operation attacks that would attempt to exploit SSD vulnerabilities and corrupt data. While most known for boosting performance of applications running on Windows systems while extending the longevity of SSDs, Condusiv solutions go a step further as the only line of defense against these malicious attacks.

Condusiv’s patented write optimization engine (IntelliWrite®) mitigates the first vulnerability, “program interference,” by disrupting the write pattern that would otherwise generate errors and corrupt data. IntelliWrite eliminates excessively small writes and subsequent reads by ensuring large, clean contiguous writes from Windows so write operations to solid-state devices are performed in the most efficient manner possible on Windows servers and PCs. An attack could only be successful in the rare instance of limited free space or zero free space on a volume that results in writes occurring natively, circumventing the benefit of IntelliWrite.

Condusiv’s second patented engine (IntelliMemory®) disrupts the second vulnerability, “read disturb,” by establishing a tier-0 caching strategy that leverages idle, available memory to serve hot reads. This renders the “read disturb” attack useless since the storage target for hot reads becomes memory instead of the SSD device. A “read disturb” attack could only be successful in the rare instance that a Windows system is memory constrained and has no idle, available memory to be leveraged for cache.

While organizations use Condusiv software on Windows systems to maintain peak performance and extend the longevity of their SSDs, they can trust Condusiv to protect against malicious attacks that would otherwise corrupt user data and bring great harm to their business and service to customers.

RecentComments

Comment RSS

Month List

Calendar

<<  September 2018  >>
MoTuWeThFrSaSu
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

View posts in large calendar