Condusiv Technologies Blog

Condusiv Technologies Blog

Blogging @Condusiv

The Condusiv blog shares insight into the issues surrounding system and application performance—and how I/O optimization software is breaking new ground in solving those issues.

First-ever “Time Saved” Dashboard = Holy Grail for ROI

by Brian Morin 2. November 2016 10:03

If you’ve ever wondered about the exact business value that Condusiv® I/O reduction software provides to your systems, the latest “time saved” reporting does exactly that.

Prior to V-locity® v6.2 for virtual servers and Diskeeper® 16 for physical servers and endpoints, customers would conduct expansive before/after tests to extract the intrinsic performance value, but struggled to extract the ongoing business benefit over time. This has been especially true during annual maintenance renewal cycles when key stakeholders need to be “re-sold” to allocate budget for ongoing maintenance, or push new licenses to new servers.

The number one request from customers has been to better understand the ongoing business benefit of I/O reduction in terms that are easily relatable to senior management and makes justifying the ROI painless. This “holy grail” search on part of our engineering team has led to the industry’s first-ever “time saved” dashboard for an I/O optimization software platform.

When Condusiv software proactively eliminates the surplus of small, fractured writes and reads and ensures more “payload” with every I/O operation, the net effect is fewer write and read operations for any given workload, which saves time. When Condusiv software caches hot reads within idle, available DRAM, the net effect is fewer reads traversing the full stack down to storage and back, which saves time.

In terms of benefits, the new dashboard shows:

    1. How many write I/Os are eliminated by ensuring large, clean, contiguous writes from Windows

    2. How many read I/Os are cached from idle DRAM

    3. What percentage of write and read traffic is offloaded from underlying SSD or HDD storage

    4. Most importantly – the dashboard relates I/O reduction to the business benefit of … “time saved”

This reporting approach makes the software fully transparent on the type of benefit being delivered to any individual system or groups of systems. Since the software itself sits within the Windows operating system, it is aware of latency to storage and understands just how much time is saved by serving an I/O from DRAM instead of the underlying SSD or HDD. And, most importantly, since the fastest I/O is the one you don’t have to write, Condusiv software understands how much time is saved by eliminating multiple small, fractured writes with fewer, larger contiguous writes.  

Have you ever wondered how much time V-locity will save a VDI deployment? Or an application supported by all-flash? Or a Hyperconverged environment? Rather than wonder, just install a 30-day version of the software and monitor the “time saved” dashboard to find out. Benefits are fully transparent and easily quantified.

Have you ever needed to justify Diskeeper’s endpoint solution across a fleet of corporate laptops with SSDs? Now you can see the “time saved” on individual systems or all systems and quantify the cost of labor against the number of hours that Diskeeper saved in I/O time across any time period. The “no brainer” benefit will be immediately obvious.

Customers will be pleasantly surprised to find out the latest dashboard doesn’t just show granular benefits but also granular performance metrics and other important information to assist with memory tuning. See the avg., min, and max of idle memory used for cache over any time period (even by the hour) to make quick assessments on which systems could use more memory to take better advantage of the caching engine for greater application performance. Customers have found if they can maintain at least 2GB used for cache, that's where they begin to get into the sweet spot of what the product can do. If even more can be maintained to establish a tier-0 cache strategy, performance rises even further. Systems with at least 4GB idle for cache will invariably serve 60% of reads or more. 

 

 

       Lou Goodreau, IT Manager, New England Fishery

      “32% of my write traffic has been eliminated and 64% of my read traffic has been cached within idle memory. This saved over 20 hours in I/O time after 24 days of testing!”

       David Bruce, Managing Partner, David Bruce & Associates

                                    “Over 50% of my reads are now served from DRAM and over 30% of write traffic has

                                   been eliminated by ensuring large, contiguous writes. Now everything is more

                                   responsive!"

 

New! Diskeeper 16 Guarantees “Faster than New” Performance for Physical Servers and PCs

by Brian Morin 26. September 2016 09:56

The world’s most popular defragmentation software for physical servers and PCs makes “defrag” a thing of the past and delivers “faster than new” performance by dynamically caching hot reads with idle DRAM.  As a result, Diskeeper® 16 guarantees to solve the toughest application performance issues on physical servers like MS-SQL and guarantees to fix sluggish PCs with faster than new performance or your money back for 90 days – no questions asked.

The market is still catching up to the fact that Diskeeper’s newest patented engine no longer “defrags” but rather proactively eliminates fragmentation with large, sequential writes from Windows to underlying HDDs, SSDs, and SAN storage systems. This eliminates the “death by a thousand cuts” scenario of small, tiny writes and reads that inflates I/Os per second, robs throughput, and shortens the lifespan of HDDs and SSDs alike. However, the biggest new announcement has to do with the addition of DRAM caching – putting idle DRAM to good use by serving hot reads without memory contention or resource starvation.

“Diskeeper 16 with DRAM caching served over 50% of my reads from DRAM and eliminated over 30% of write traffic by preventing fragmentation. Now everything is more responsive!” - David Bruce, Managing Partner, David Bruce & Associates

“Diskeeper 16 with DRAM caching doubled our throughput, so we could backup in half the time.  Our Dell Rapid Recovery backup server is running smoother than ever.” - Curtis Jackson, Network Admin, School City of Hammond

“WOW! Watch it go! I have 44GB of memory in the physical server and Diskeeper is using around 20GB of it to cache!! I can’t imagine having a server without it! Diskeeper 16 is a vastly improved version of Diskeeper!” - Andy Vabulas, Vabulas Enterprises

“Our Symantec app running on a physical server has been notoriously slow for as long as I can remember, but since adding Diskeeper 16 it has improved significantly.” Josh Currier, Network Infrastructure Manager, Munters Corporation

 “With Diskeeper 16 I can tell my workstation is more responsive with no lag or any type of hesitation. Truly SMART Technology.” - William Krasulak, Systems/Network Admin, Nacci Printing, Inc.

“Our most I/O intensive applications on physical servers needed some help, so we installed Diskeeper 16 with DRAM caching and were amazed by the performance boost!” - Victor Grandmaiter, IT Director, Fort Bend Central Appraisal District

“Diskeeper eliminated 32% of my write traffic by preventing fragmentation and cached 64% of my read traffic within idle memory. This saved my workstation over 20 hours in I/O time after 24 days of testing!” - Lou Goodreau, IT Manager, New England Fishery

“Installed Diskeeper 16 on our worst performing physical servers running ERP with a SQL database and saw an immediate 50% boost!" - Hamid Bouhassoune, Systems Engineer, Global Skincare Company

A top New York clothing brand tried Diskeeper 16 with DRAM caching on their physical servers and saw backup times with Veeam and Backup Exec drop by more than half!

Before Diskeeper Install:

8/7, 10GB, 14MB/s, 1:38

8/8, 11 GB, 13MB/s, 1:54

After Diskeeper Install:

          8/12, 13GB, 21MB/s, 1:30

        8/13, 14GB, 30MB/s, 0:58

        8/14, 13GB, 33MB/s, 0:55

        8/15, 11GB, 36MB/s, 0:44

        8/19, 17GB, 30MB/s, 1:06

 

A Large Illinois Non-Profit tested Diskeeper 16 with DRAM caching on Windows 2012R2 physical servers running CRM and accounting software with a MS-SQL backend. Note – these improvements were almost exclusively from Diskeeper 16’s write optimization engine since idle memory was not available to initiate the new caching engine.

 

See a screenshot of the new dashboard reporting that shows “time saved” from using Diskeeper 16 to eliminate fragmentation and cache reads with idle DRAM.

 

Try Diskeeper 16 with DRAM caching for 30-days -> 

 

 

 

Teaser: Coming Soon! Intelligent Caching and Fragmentation Prevention = IO Heaven

by Brian Morin 19. September 2016 04:53

Sometimes the performance of physical servers, PCs and laptops slows to a crawl. No matter what you do, it takes half an eternity to open some files. It’s tied into the architecture of the Windows operating system. The OS becomes progressively slower the longer it is used and the more it is burdened with added software and large volumes of data.

In the old days, the solution was easy – defragment the hard drive. However, many production servers can’t be taken offline to defragment, and many laptops only have solid state drives (SSDs) that don’t submit to defragmentation. So is there any hope?

Condusiv has solved these dilemmas in the soon to be released version of Diskeeper®. With over 100 million licenses sold, Diskeeper has been the undisputed leader for decades when it comes to keeping Windows systems fragment free and performing well. And with Diskeeper 16 coming out soon, feedback from Beta testers is that it goes way beyond a mere incremental release with a few added frills, bells and whistles. Instead, the consensus among them is that it is a “next generation” release that goes well beyond just keeping Windows systems running like new but actually boosts performance faster than new.

How is this being achieved? The company had been perfecting two technologies within its portfolio and is now bringing them together – fragmentation prevention and DRAM caching.

On the one side, the idea is that you prevent fragmentation before data is written to a production server. This is a lifesaver for IT administrators who need to immediately boost the performance of critical applications like MS-SQL running on physical servers. Diskeeper keeps systems running optimally with its patented fragmentation prevention engine that ensures large, clean, contiguous writes from Windows, eliminating the small, tiny writes that rob performance with “death by a thousand cuts” by inflating IOPS and stealing throughput.

But that’s only the half of it.  A little known fact about Condusiv is that it is also a world leader in caching. In addition to their incredible work on Diskeeper, the Condusiv development team has evolved a unique DRAM caching approach that has been implemented via OEM partners for several years. So popular has this technology become that the company has sold over 5 million caching licenses that have been tied to ultrabooks but now is being made available commercially.

Soon to be released Diskeeper 16’s DRAM caching electrifies performance:

·         Benchmark tests show MS-SQL workload performance boosts of up to 6X

·         An average of 40% latency reduction across hundreds of servers

·         No hint of memory contention or resource starvation

·         Fleets of laptops suddenly running like a dream

·         PCMark MS Office productivity tests show an increase of 73% on Windows 10 machines

·         Huge leaps in SSD write speed and extended SSD lifespan

·         Solves even the worst performing physical servers or Windows PCs backed by a money-back guarantee.

Could it be, then, that there really is hope to get PCs and physicals servers to be running faster than new?

 

You’ll have to wait until Diskeeper 16 is unveiled to hear the full story. 

Is Fragmentation Robbing SAN Performance?

by Brian Morin 16. March 2015 09:39

This month Condusiv® announced the most significant development in the Diskeeper® product line to date – expanding our patented fragmentation prevention capabilities beyond server local storage or direct-attached storage (DAS) to now include Storage Area Networks, making it the industry's first real-time fragmentation solution for SAN storage.

Typically, as soon as we mention "fragmentation" and "SAN" in the same sentence, an 800 pound gorilla walks into the room and we’re met with some resistance as there is an assumption that RAID controllers and technologies within the SAN mitigate the problem of fragmentation at the physical layer.

As much as SAN technologies do a good job of managing blocks at the physical layer, the real problem why SAN performance degrades over time has nothing to do with the physical disk layer but rather fragmentation that is inherent to the Windows file system at the logical disk software layer.

In a SAN environment, the physical layer is abstracted from the Windows OS, so Windows doesn't even see the physical layer at all – that’s the SAN's job. Windows references the logical disk layer at the file system level.

Fragmentation is inherent to the fabric of Windows. When Windows writes a file, it is not aware of the size of the file or file extension, so it will break that file apart into multiple pieces with each piece allocated to its own address at the logical disk layer. Therefore, the logical disk becomes fragmented BEFORE the SAN even receives the data.

How does a fragmented logical disk create performance problems? Unnecessary IOPS (input/output operations per sec). If Windows sees a file existing as 20 separate pieces at the logical disk level, it will execute 20 separate I/O commands to process the whole file. That’s a lot of unnecessary I/O overhead to the server and, particularly, a lot of unnecessary IOPS to the underlying SAN for every write and subsequent read.

Diskeeper 15 Server prevents fragmentation from occurring in the first place at the file system layer. That means Windows will write files in a more contiguous or sequential fashion to the logical disk. Instead of breaking a file into 20 pieces that needs 20 separate I/O operations for every write and subsequent read, it will write that file in a more contiguous fashion so only minimal I/O is required.

Perhaps the best way to illustrate this is with a traffic analogy. Bottlenecks occur where freeways intersect. You could say the problem is not enough lanes (throughput) or the cars are too slow (IOPS), but we’re saying the easiest problem to solve is the fact of only one person per car!

By eliminating the Windows I/O "tax" at the source, organizations achieve greater I/O density, improved throughput, and less I/O required for any given workload – by simply filling the “car” with more people. Fragmentation prevention at the top of the technology stack ultimately means systems can process more data in less time.

When openBench Labs tested Diskeeper Server, they found throughput increased 1.3X. That is, from 75.1 MB/sec to 100 MB/sec. A manufacturing company saw their I/O density increase from 24KB to 45KB. This eliminated 400,000 I/Os per server per day, and the IT Director said it "eliminated any lag during peak operation."

Many administrators are led to believe they need to buy more IOPS to improve storage performance when in fact, the Windows I/O tax has made them more IOP dependent than they need to be because much of their workload is fractured I/O. By writing files in a more sequential fashion, the number of I/Os required to process a GB of data drops significantly so more data can be processed in less time.

Keep in mind, this is not just true for SANs with HDDs but SSDs as well. In a SAN environment, the Windows OS isn’t aware of the physical layer or storage media being used. The I/O overhead from splitting files apart at the logical disk means just as many unnecessary IOPS to SSD as HDD. SSD is only processing that inefficient I/O more quickly than a hard disk drive.

Diskeeper 15 Server is not a "defrag" utility. It doesn’t compete with the SAN for management of the physical layer by instructing the RAID controllers on the how to manage the data. Diskeeper’s patented proactive approach is the perfect complement to a SAN by ensuring only productive I/O is processed from server to storage to keep physical servers and SAN storage running like new.

With organizations spending tens of thousands of dollars on server and storage hardware and even hundreds of thousands of dollars on large SSD deployments, why give 25% or more performance over to fragmentation when it can be prevented altogether for a mere $400 per physical server at our lowest volume tier?

Try Diskeeper 15 Server for 30 Days ->

NEW V-locity 4 VM Accelerator Improves VM Performance by up to 50%

by Jeff Medina 10. December 2012 10:00

Today we are very excited to announce the release of V-locity 4 VM Accelerator. With this latest release, V-locity increases VM and application performance by up to 50% and does so without any additional storage hardware.

Let’s face it - in today’s world of virtual environments, we generate a tremendous amount of data and it’s only the beginning. In fact, findings included in a recent study by IDC titled “Extracting Value from Chaos” predict that in the next ten years we will create 50 times more information and 75 times more files.

The impact of this data explosion on server virtualization can often lead to I/O bottlenecks. This is because a physical server running multiple virtual machines (VMs) must often carry out far more I/O operations than one server running a single workload, and typical virtualization environments emulate I/O devices that run less efficiently than native I/O devices.

In essence, virtualization acts like a funnel, combining and mixing many disparate I/O streams, sending out to the disk what becomes a very random I/O pattern. To make matters worse, the more VMs are added, the more the issue is compounded as more I/O is "randomized." All of this has a very negative affect on storage performance, and renders time-honored techniques such as read-ahead buffers and caching algorithms far less effective than in conventional physical environments.

Storage I/O is the most critical issue in a virtualized environment, and can cause organizations to spend a great deal on storage, purchasing more and more disk spindles, but often using only a fraction of their capacity because of performance issues. The outcome is that, due to issues relating to performance bottlenecks in the storage infrastructure, some applications are deemed unable to be virtualized; however, a properly tuned storage environment might have accommodated those applications. So what’s the alternative? The answer is V-locity 4 VM Accelerator. 

V-locity 4 VM Accelerator provides:

  • Increased application performance up to 50%
  • Up to 50% faster access to frequently accessed files
  • Faster I/O performance without the cost of additional storage hardware
  • Increased VM density per physical server up to 50%
  • Extended hardware lifespan by eliminating unnecessary I/Os
  • Automatic and real-time operation for true “Set It and Forget It®” management 

What makes V-locity 4 so effective is its powerful toolkit of proactive technologies, including IntelliWrite,® V-Aware,® CogniSAN,® InvisiTasking® and the new IntelliMemory® RAM caching technology.

New! IntelliMemory™ Caching Technology
IntelliMemory intelligent caching technology boosts active data, improving I/O response time up to 50% or more while also eliminating unnecessary I/O operations from getting into the network or storage.

Improved! IntelliWrite® Technology
IntelliWrite automatically prevents the operating system from breaking files into pieces and writing those pieces in a performance penalized manner. This proactive approach improves performance up to 50% or more while preventing any negative impact to snapshots replication, data deduplication or thin provisioning growth. As this proactive approach happens at the server level, the network and shared storage simply has less I/O operations to transfer and process.

New! Performance Benefit Analyzer
The Performance Benefits Analyzer helps document the performance benefits of V-locity. The benefit analyzer looks at your current system performance, then compares these results to those after using V-locity to provide a detailed report showing specific improvements and benefits to your system.

V-Aware® Technology
V-Aware detects external resource usage from other virtual machines on the virtual platform and eliminates resource contention that might slow performance.

CogniSAN® Technology
CogniSAN detects external resource usage within a shared storage system, such as a SAN, and allows for transparent optimization by not competing for resources utilized by other VMs over the same storage infrastructure. And it does this without intruding in any way into SAN-layer operations.

InvisiTasking® Technology
InvisiTaksing allows all the V-locity 4 "background" operations within the VM to run with zero resource impact on current production.

Set It and Forget It®
Automatic and real-time operation.

For more details and a FREE trial, visit www.condusiv.com/products/v-locity or call a sales representative at 1-800-829-6468.

RecentComments

Comment RSS

Month List

Calendar

<<  July 2018  >>
MoTuWeThFrSaSu
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345

View posts in large calendar