Condusiv Technologies Blog

Condusiv Technologies Blog

Blogging @Condusiv

The Condusiv blog shares insight into the issues surrounding system and application performance—and how I/O optimization software is breaking new ground in solving those issues.

Case Study: Non-Profit Eliminates Frustrating Help Desk calls, Boosts Performance and Extends Useful Hardware Lifecycle

by Marissa Newman 9. September 2019 11:47

When PathPoint was faced with user complaints and productivity issues related to slow performance, the non-profit organization turned to Condusiv’s I/O reduction software to not only optimize their physical and virtual infrastructure but to extend their hardware lifecycles, as well. 

As technology became more relevant to PathPoint’s growing organization and mission of providing people with disabilities and young adults the skills and resources to set them up for success, the IT team had to find a solution to make the IT infrastructure as efficient as possible. That’s when the organization looked into Diskeeper® as a solution for their physical servers and desktops.

“Now when we are configuring our workstations and laptops, the first thing we do is install Diskeeper. We have several lab computers that we don’t put the software on and the difference is obvious in day-to-day functionality. Diskeeper has essentially eliminated all helpdesk calls related to sluggish performance.” reported Curt Dennett, PathPoint’s VP of Technology and Infrastructure.

Curt also found that workstations with Diskeeper installed have a 5-year lifecycle versus the lab computers without Diskeeper that only last 3 years and he found similar results on his physical servers that are running full production workloads. Curt observed, “We don’t need to re-format machines running Diskeeper nearly as often. As a result, we gained back valuable time for other important initiatives while securing peak performance and longevity out of our physical hardware assets. With limited budgets, that has truly put us at ease.”

When PathPoint expanded into the virtual realm, Curt looked at V-locity® for their VM’s and, after reviewing the benefits, brought the software into the rest of their environment. The organization found that with the powerful capabilities of Diskeeper and V-locity, they were able to offload 47% of I/O traffic from storage, resulting in a much faster experience for their users.

The use of V-locity and Diskeeper is now the standard for PathPoint. Curt concluded, “The numbers are impressive but what’s more for me, is the gut feeling and the experience of knowing that the machines are actually performing efficiently. I wouldn’t run any environment without these tools.”

 

Read the full case study

 

Try V-locity FREE for yourself – no reboot is needed

Caching Is King

by Gary Quan 29. July 2019 06:43

Caching technology has been around for quite some time, so why is Condusiv’s patented IntelliMemory® caching so unique that it outperforms other caching technology and has been licensed by other top OEM PC and Storage vendors? There are a few innovations that make it stand above the others. 

The first innovation is the technology to determine what data to put and keep in cache for the best performance gains on each system. Simple caching methods place recently read-in data into the cache with the hopes that this data will be read again so it can be satisfied from cache. Ok, but far from efficient and optimal. IntelliMemory takes a more heuristic approach using two main factors. One, in the background, it is determining what data is getting read most often to ensure a high cache hit rate and two, using analytics, IntelliMemory knows that certain data patterns will provide better performance gains than others. Combining these two factors, IntelliMemory will use your valuable memory resources to get the optimal caching performance gains for each individual system. 

Another important innovation is the dynamic determination of how much of the system’s valuable memory resource to use. Unlike some caching technologies that require you to allocate a specific amount of memory for caching, IntelliMemory will automatically use just what is available and not being used by other system and user processes.   And if any system or user processes need  the memory, IntelliMemory dynamically gives it back so there is never a memory contention issue.  In fact, IntelliMemory always leaves a buffer of memory available, at least 1.5 GB at a minimum. For example, if there is 4GB available memory in the system, IntelliMemory will use at most 2.5GB of this and will dynamically release it if any other processes need it, then use it again when it becomes available.  That’s one reason we trademarked the phrase Set It and Forget It® 

Developments like these put IntelliMemory caching above all others.  That’s why, when combined with our patented IntelliWrite® technology, we’ve helped millions of customers achieve 30-50% or more performance gains on their Windows systems.  Frankly, some people think it’s magic, but if you’ll pardon my assertion, it’s really just innovative thinking.

3 Min Video on SAN Misconceptions Regarding Fragmentation

by Brian Morin 23. June 2015 08:56

In just 3 minutes, George Crump, Sr Analyst at Storage Switzerland, explains the real problem around fragmentation and SAN storage, debunks misconceptions, and describes what organizations are doing about it. It should be noted, that even though he is speaking about the Windows OS on physical servers, the problem is the same for virtual servers connected to SAN storage. Watch ->

In conversations we have with SAN storage administrators and even storage vendors, it usually takes some time for someone to realize that performance-robbing Windows fragmentation does occur, but the problem is not what you think. It has nothing to do with the physical layer under SAN management or latency from physical disk head movement. 

When people think of fragmentation, they typically think in the context of physical blocks on a mechanical disk. However, in a SAN environment, the Windows OS is abstracted from the physical layer. The Windows OS manages the logical disk software layer and the SAN manages how the data is physically written to disk or solid-state.

What this means is that the SAN device has no control or influence on how data is written to the logical disk. In the video, George Crump describes how fragmentation is inherent to the fabric of Windows and what actually happens when a file is written to the logical disk in a fragmented manner – I/Os become fractured and it takes more I/O than necessary to process any given file. As a result, SAN systems are overloaded with a small, fractured, random I/O, which dampens overall performance. The I/O overhead from a fragmented logical disk impacts SAN storage populated with flash equally as much as a system populated with disk.

The video doesn’t have time to go into why this actually happens, so here is a brief explanation: 

Since the Windows OS takes a one-size-fits-all approach to all environments, the OS is not aware of file sizes. What that means is the OS does not look for the proper size allocation within the logical disk when writing or extending a file. It simply looks for the next available allocation. If the available address is not large enough, the OS splits the file and looks for the next available address, fills, and splits again until the whole file is written. The resulting problem in a SAN environment with flash or disk is that a dedicated I/O operation is required to process every piece of the file. In George’s example, it could take 25 I/O operations to process a file that could have otherwise been processed with a single I/O. We see customer examples of severe fragmentation where a single file has been fractured into thousands of pieces at the logical layer. It’s akin to pouring molasses on a SAN system.

Since a defragmentation process only deals with the problem after-the-fact and is not an option on a modern, production SAN without taking it offline, Condusiv developed its patented IntelliWrite® technology within both Diskeeper® and V-locity® that prevents I/Os from fracturing in the first place. IntelliWrite provides intelligence to the Windows OS to help it find the proper size allocation within the logical disk instead of the next available allocation. This enables files to be written (and read) in a more contiguous and sequential manner, so only minimum I/O is required of any workload from server to storage. This increases throughput on existing systems so organizations can get peak performance from the SSDs or mechanical disks they already have, and avoid overspending on expensive hardware to combat performance problems that can be so easily solved.

Tags: , , , , ,

NEW V-locity 4 VM Accelerator Improves VM Performance by up to 50%

by Jeff Medina 10. December 2012 10:00

Today we are very excited to announce the release of V-locity 4 VM Accelerator. With this latest release, V-locity increases VM and application performance by up to 50% and does so without any additional storage hardware.

Let’s face it - in today’s world of virtual environments, we generate a tremendous amount of data and it’s only the beginning. In fact, findings included in a recent study by IDC titled “Extracting Value from Chaos” predict that in the next ten years we will create 50 times more information and 75 times more files.

The impact of this data explosion on server virtualization can often lead to I/O bottlenecks. This is because a physical server running multiple virtual machines (VMs) must often carry out far more I/O operations than one server running a single workload, and typical virtualization environments emulate I/O devices that run less efficiently than native I/O devices.

In essence, virtualization acts like a funnel, combining and mixing many disparate I/O streams, sending out to the disk what becomes a very random I/O pattern. To make matters worse, the more VMs are added, the more the issue is compounded as more I/O is "randomized." All of this has a very negative affect on storage performance, and renders time-honored techniques such as read-ahead buffers and caching algorithms far less effective than in conventional physical environments.

Storage I/O is the most critical issue in a virtualized environment, and can cause organizations to spend a great deal on storage, purchasing more and more disk spindles, but often using only a fraction of their capacity because of performance issues. The outcome is that, due to issues relating to performance bottlenecks in the storage infrastructure, some applications are deemed unable to be virtualized; however, a properly tuned storage environment might have accommodated those applications. So what’s the alternative? The answer is V-locity 4 VM Accelerator. 

V-locity 4 VM Accelerator provides:

  • Increased application performance up to 50%
  • Up to 50% faster access to frequently accessed files
  • Faster I/O performance without the cost of additional storage hardware
  • Increased VM density per physical server up to 50%
  • Extended hardware lifespan by eliminating unnecessary I/Os
  • Automatic and real-time operation for true “Set It and Forget It®” management 

What makes V-locity 4 so effective is its powerful toolkit of proactive technologies, including IntelliWrite,® V-Aware,® CogniSAN,® InvisiTasking® and the new IntelliMemory® RAM caching technology.

New! IntelliMemory™ Caching Technology
IntelliMemory intelligent caching technology boosts active data, improving I/O response time up to 50% or more while also eliminating unnecessary I/O operations from getting into the network or storage.

Improved! IntelliWrite® Technology
IntelliWrite automatically prevents the operating system from breaking files into pieces and writing those pieces in a performance penalized manner. This proactive approach improves performance up to 50% or more while preventing any negative impact to snapshots replication, data deduplication or thin provisioning growth. As this proactive approach happens at the server level, the network and shared storage simply has less I/O operations to transfer and process.

New! Performance Benefit Analyzer
The Performance Benefits Analyzer helps document the performance benefits of V-locity. The benefit analyzer looks at your current system performance, then compares these results to those after using V-locity to provide a detailed report showing specific improvements and benefits to your system.

V-Aware® Technology
V-Aware detects external resource usage from other virtual machines on the virtual platform and eliminates resource contention that might slow performance.

CogniSAN® Technology
CogniSAN detects external resource usage within a shared storage system, such as a SAN, and allows for transparent optimization by not competing for resources utilized by other VMs over the same storage infrastructure. And it does this without intruding in any way into SAN-layer operations.

InvisiTasking® Technology
InvisiTaksing allows all the V-locity 4 "background" operations within the VM to run with zero resource impact on current production.

Set It and Forget It®
Automatic and real-time operation.

For more details and a FREE trial, visit www.condusiv.com/products/v-locity or call a sales representative at 1-800-829-6468.

Best Practices for Storage Area Network (SAN) Defragmentation

by Michael 29. March 2011 02:30

Overview:

As high performing storage solutions based on block protocols (e.g. iSCSI, FC), SANs excel at optimizing block access. SANs work at a storage layer underneath the operating systems file system; usually NTFS when discussing Microsoft Windows®. That dictates that a SAN is unaware of “file” fragmentation and unable to solve this issue.


Fig 1.0: Diagram of Disk I/O as it travels from Operating System to SAN LUN.

With file fragmentation causing the host operating system to generate additional unnecessary disk I/Os (more overhead on CPU and RAM) performance suffers. In most cases the randomness of I/O requests, due to fragmentation and concurrent data requests, the blocks that make up the file will be physically scattered in uneven stripes across a SAN LUN/aggregate. This causes even greater degradation in performance.


Fig 1.1: Sample Windows Performance Monitor Report from fragmented SAN-attached NTFS volume.

Fortunately there are simple solutions to NTFS file system fragmentation; fragmentation prevention and defragmentation. Both approaches solve file fragmentation at the source, the local disk file system.

IntelliWrite® “The only way to prevent fragmentation before it happens™”

IntelliWrite is an advanced file system driver that leverages and improves upon modern Windows’ file system “Best Fit” file write design in order to write a file in a non-fragmented state on the initial write. Intelligently writing contiguous files to the disk provides four principal benefits above and beyond defragmentation, including:

  • Prevents most fragmentation before it happens
  • Better file write performance
  • An energy friendly approach to improving performance, as defragmentation is not required for files handled by IntelliWrite
  • 100% compatibility with copy-on-write technologies used in advanced storage management solutions (e.g. snapshots)

While eliminating fragmentation improves performance. it is important to properly configure and account for advanced SAN features.

With the increasing popularity of SANs, we've included instructions in the Diskeeper installation to ensure users properly configure Diskeeper:

We suggest reading this full document before executing any of the recommended configurations. These instructions apply to V-locity (used on VMs as well).

Best Practices:

Highlights:

Implementing Diskeeper on a SAN is simple and straightforward. There are two principal concepts to ensuring proper configuration and optimal results:

  • Ensure IntelliWrite is enabled for all volumes.
  • Find a time to schedule Automatic Defragmentation (more details below)
Details:

If you are implementing any of the following SAN based technologies such as Thin Provisioning, Replication, Snapshots, Continuous Data Protection (CDP) or Deduplication, it is recommended to follow these guidelines.

Defragmentation can cause unwanted side effects when any of the above referenced technologies are employed. These side effects include:

With SAN replication:
Likelihood of additional data replication traffic.

With Snapshots/CDP:
Likelihood of additional storage requirements for data that defragmented/moved and snapshot-related performance lag.

With Thin Provisioning:
Likelihood of additional storage requirements for data that defragmented/moved.

With Deduplication:
Potential for additional deduplication overhead. Also note that deduplication can be used to remove duplicate blocks incorrectly allocated due to defragmentation. This process can therefore be used to reclaim over-provisioned space.

This is why it is important to enable the fragmentation prevention (IntelliWrite) and change the Automatic Defragmentation to occur during non-production periods to address the pre-existing fragmentation:

During Installation, disable Automatic Defragmentation;


Uncheck the “Enable Automatic Defragmentation” option during installation.

Upon installation ensure IntelliWrite is enabled on all volumes (default). IntelliWrite was specifically designed to be 100% compatible with all advanced SAN features, and should be enabled on all SAN LUNs. IntelliWrite configuration is enabled or disabled per volume, and can be used in conjunction with Automatic Defragmentation, or exclusively.


To ensure IntelliWrite is enabled, right click a volume(s) and select the feature.


Then confirm “Prevent Fragmentation on this volume” is selected, and click “OK” to complete.

Once installed, enable Automatic Defragmentation for any volumes that are not mapped to a SAN LUN. This may include the System Partition (e.g. C:\).


To enable Automatic Defragmentation, right click a volume(s) and select the feature.


Then check “Enable Automatic Defragmentation on the selected volumes” and click “OK” to complete.

If you are not using any advanced SAN features, it is recommended to enable Automatic Defragmentation for all days/times. However, note that pre-existing fragmentation will require significant effort from Diskeeper to clean up. This effort will generate disk I/O activity within the SAN.

Therefore, if existing fragmentation is significant, initially schedule Diskeeper to run during off-peak hours. As Diskeeper has robust scheduling capability, this is easily configured.


To enable Automatic Defragmentation during non-production periods, right click a volume(s) and select the feature.


Then check “Enable Automatic Defragmentation on the selected volumes”. Diskeeper is then scheduled by using your mouse to highlight over the 30 minute blocks in the interactive weekly calendar.

The above example disables defragmentation Monday through Friday. It also disables defragmentation Saturdays and Sundays except between 7pm until 3:30am the following morning. This would afford 17 hours of defragmentation availability per week. Immediately following these scheduled defragmentation periods is when SAN maintenance for advanced features should be addressed (e.g. thin reclamation, deduplication).

Should accommodating SAN maintenance be difficult (e.g. limited maintenance windows)using a weekly optimization process, very granular scheduling is also available with Diskeeper. Note, maintenance windows are not required in order to implement and benefit from IntelliWrite.


To schedule for specific non-reoccurring dates and times in the future, select the “Turn Automatic Defragmentation on or off based on specific dates” option. Click any multitude of dates and times using Shift-Select or Ctrl-Select. Once done, click OK to complete.

If you are implementing the above mentioned advanced technologies and your SAN provides hot block optimization / data tiering, it is also recommended to disable I-FAAST® (Intelligent File Access Acceleration Sequencing technology). I-FAAST sequences hot “files” (not blocks) in a Windows volume, after determining hardware performance characteristics. The sequencing process creates additional movement of data for those advanced SAN features, and is therefore generally recommended to disable when similar SAN solutions are in place.


To disable I-FAAST, right click a volume(s) and select the feature.

Note, I-FAAST requires Automatic Defragmentation be enabled. Also note that I-FAAST is disabled by default in Diskeeper 2011 in certain cases. Also note that I-FAAST generates additional disk I/Os and will therefore cause an increase in the aforementioned Automatic Defragmentation side effects.

Once pre-existing fragmentation has been removed, increase the periods in which Diskeeper actively optimizes the Windows file systems. With real-time defragmentation and InvisiTasking® technology, Diskeeper immediately cleans up fragmentation (that is not prevented by IntelliWrite). This minimal ongoing optimization generates only invisible, negligible I/O activity.

New features in Diskeeper 2011 to improve SAN performance:

Diskeeper 2011 introduces SAN specific solutions. These default solutions automate many of the configurations required for SAN-attached servers.

Diskeeper 2011’s new Instant Defrag™ technology dramatically minimizes I/O activity, and exponentially speeds up defragmentation. The Instant Defrag engine is provided fragmentation information, in real-time, by the IntelliWrite file system filter driver (those fragments that it does not prevent). Without the traditional need to run a time and resource intensive whole-volume fragmentation analysis, Instant Defrag can address the recently fragmented files as they occur. This dynamic approach prevents a buildup of fragmentation, which could incur additional I/O overhead to solve at a later date/time.

Diskeeper 2011’s new Efficiency Mode (default) maximizes performance, while minimizing disk I/O activity. By focusing on efficiency and performance and not on presenting a “pretty disk” visual display, Diskeeper 2011 minimizes negative side effects (e.g. reduce snapshot storage requirements or thin LUN growth, etc..) while maximizing performance benefits. It is a SAN-optimized defrag mode and our recommended solution for SAN-attached Windows volumes.

By default, Efficiency Mode also disables proprietary file placement features such as I-FAAST.

Also, by default, Diskeeper 2010/2011 moves data to lower NTFS clusters, and hence generally “forward” on SAN LUNs.

Best Practices Summary:
  • Ensure IntelliWrite is enabled for all volumes.
  • Automatic Defragmentation should be enabled at all times for all direct attached storage volumes.
  • Use Efficiency Mode of Diskeeper 2011.
  • Schedule Automatic Defragmentation on SAN LUNs, based on use of advanced SAN features.
  • Run SAN processes such as space reclamation and/or deduplication on recently defragmented LUNs using advanced SAN features.

Want this in PDF form. Get it here: Best Practices for using Diskeeper on Storage Area Networks.pdf (3.00 mb)

Tags: , , , , ,

Defrag | Diskeeper | SAN

RecentComments

Comment RSS

Month List

Calendar

<<  December 2019  >>
MoTuWeThFrSaSu
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345

View posts in large calendar